# **Promoting Green Streets**

#### A Recipe for Integrating Water and Transportation Infrastructure Investment







# What we will cover

- Green Street Overview
- Ingredients needed
- Explanation of steps
- Nashville context and experience



















Source: loomismcafee.com





# Hitch your wagon to municipal priorities











National Complete Streets Coalition

Source:saferoutespartnership.org





- Assess the impervious cover associated with the road system
- 2. Calculate stormwater runoff from the road system
- Identify appropriate right-ofway green elements
- 4. Determine suitable locations
- 5. Quantify the volume reduction to conveyance system
- 6. Estimate Implementation Cost
- 7. Develop a master plan
- 8. Advocate for green streets

# **Project Steps**



Source: AmericanRivers.org





# **Green Street Ingredients**



# **Green Street Recipe**



Hawkins Partners, Inc.



# **Big Picture**



Image courtesy of AMEC





# **Big Picture**

"In 2008, which was closer to a typical rainfall year than 2009 and 2010, 37 overflows occurred which resulted in a discharge of 18.3 MG of combined wastewater."

- Nashville LTCP (2011)







# Step 1: Choosing a Drainage Area







# Step 1: Choosing a Drainage Area







# Step 2: Assess Impervious Area

Basin Size: 230 Acres

Paved road cover: 35 Acres

Building Coverage: 40 Acres

Parking Lots: 6.3 Acres

Miscellaneous: 0.06 Acres

**43%** percent of basin is roadway surface







# Step 2: Assess Impervious Area

Paved road cover: 35 Acres

That means approximately 43 MILLION GALLONS of rainfall run off the road network alone.

What if we could capture **80, 90, or 95%** percent of that volume before it reaches the conveyance system???







### Step 3: Calculate Volumes From Roadway Impervious Cover

#### Catchment Area (ft2) X Avg Rainfall (ft) X Runoff Coefficient = TOTAL RUNOFF (ft3)

Boscobel's roadway represent approximately 35 acres or 1,525,000 sq. ft. of impervious surface

Average rainfall in Nashville is 48 inches or 4ft.

The accepted runoff coefficient in Nashville for impervious surfaces is 0.95. This means that 95% of water falling on a paved surface moves off-site. The remaining 5% evaporates or clings to a material surface.

1,525,000 (ft2) X 4.0 (ft) X 0.95 = 5,795,000 (ft3) OF RUNOFF





# Step 3: Calculate Volumes

Total Runoff Volume (ft3) X 7.48 gallons per cubic foot = TOTAL RAINWATER (GAL)

5,795,000 (ft3) X 7.48 gal/ft3 = 45,200,000 gallons





# Step 4a: Potential Treatments







For Streets 1. Curb Bump-outs 2. Linear Bioretention

For Alleys 3. Permeable Pavement





# So how do we assess suitability?







# Step 4: Tailor Suitability Criteria to your area



#### Who comes to the table is up to you: Officials, engineers, designers, citizens





# Step 4: Tailor Suitability to your area

#### SLOPE

#### ROW WIDTH

#### SOIL COMPOSITION

#### UTILITY CONFLICTS

#### STORMWATER COMPLAINT DATA

#### HOUSE FRONTAGE / ON STREET PARKING

#### PROXIMITY TO NODES OF PEDESTRIAN ACTIVITY





# Step 4: Tailor Suitability to your area



Our process produced a suitability matrix





# Step 4: Tailor Suitability to your area

| ************************************** | 2 2<br>1 2<br>2 2<br>1 2<br>2 2<br>1 2<br>2 2<br>2 2 | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$ | 1<br>1<br>0<br>2<br>2<br>2<br>0<br>0<br>0<br>0 | 9,000,000,000,000,000,000,000,000,000,0 | <sup>98</sup><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> |  |
|----------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|
| 11                                     | 2 2 2 2 2 2                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                              | 0 1<br>0 0                              | 8                                                                                                                                     |  |
| 12                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                              | 0 0                                     |                                                                                                                                       |  |







Forrester Ave.



Forrester and Lockeland



Lockland Springs Elementary







#### SLOPE ASSESSMENT

The slope on this block averages 3.8% from the high point at the right of the image to the low point at the left.



#### **RIGHT OF WAY ASSESSMENT**

ROW width is approximately 60'-0". Nashville's Metro Public Works department defines this road as a *Medium Density Local Road* with a minimum standard with of 50'-0".







This block has as slope of less than 2%.



The figure above shows a block with a slope of over 9%.



This block has a 50 foot Right of Way, letting us reduced drive lanes to create room for stormwater features



This block has a 46 foot Right of Way, the minimum width for installing green features and maintaining standard drive lanes.







#### LOT FRONTAGE ASSESSMENT

In this neighborhood many of the street frontages are narrow and deep, with the short side (typically 50'-0" wide) fronting the street. This means most homeowners do not have driveways and therefore park a vehicle on these street with quick access to their front door. The north-south street have longer frontages and would not displace as much parking.





# Suitable and Potential Blocks







### Step 6: Develop Templates



**Pervious Pavement** 



connecting people-saving rivers

### Step 6: Develop Templates



#### WATER QUALITY SWALES

#### Components:

- Best on slopes of less than 2%
- Level spreaders needed every 50 feet
- Filter Bed of engineered soils
- Underdrain for impermeable soils.

#### Advantages:

- Less expensive than curb and gutter
- Reduces Runoff Velocity
- Promotes Infiltration
- Conveyance and stormwater treatment

#### Limitations:

- Cannot be used on steep slopes
- Higher land requirement
- Higher maintenance than curb / gutter





## Step 7: Price Templates

| Traditional Infrastructure Improvements |     |            |     |             |  |  |  |  |
|-----------------------------------------|-----|------------|-----|-------------|--|--|--|--|
| Utilities                               |     |            | 3   |             |  |  |  |  |
| New single sump inlet with casting      | ea. | \$2,500.00 | 1   | \$2,500.00  |  |  |  |  |
| Water line 6" Cl                        | Lf. | \$145.00   | 50  | \$7,250.00  |  |  |  |  |
| Sub-total                               |     |            | 2   | \$9,750.00  |  |  |  |  |
| Contingency (30%)                       |     |            | - 2 | \$2,925.00  |  |  |  |  |
| Traditional Total                       |     |            | 55  | \$12,675.00 |  |  |  |  |

| Green Infrastructure Improvements |      |          |     |             |
|-----------------------------------|------|----------|-----|-------------|
|                                   |      |          |     |             |
| Planting                          |      |          |     |             |
| Trees 3"                          | ea.  | \$500.00 | 2   | \$1,000.00  |
| Bioswale Planting                 | s.f. | \$6.00   | 600 | \$3,600.00  |
| Sod                               | s.y. | \$6.00   | 55  | \$330.00    |
| Misc                              |      | 3        |     |             |
| Engineered Soil                   | C.Y. | \$40.00  | 50  | \$2,000.00  |
| 6" perforated underdrains         | l.f. | \$5.00   | 150 | \$750.00    |
| Mulch                             | c.y. | \$40.00  | 7   | \$280.00    |
| 2' deep linear gravel diaphragm   | с.у. | \$25.00  | 8   | \$200.00    |
| Sub-total                         |      |          |     | \$8,160.00  |
| Contingency(30%)                  |      |          |     | \$2,448.00  |
| GI total                          |      |          | 82  | \$10,608.00 |
| TOTAL                             |      |          |     | \$23,283.00 |
| PRICE PER SQUARE FOOT             | s.f. |          | 600 | \$38.81     |





#### **Step 8: Select Appropriate Pilot Locations**







### Step 8: Select Appropriate Pilot Locations







### Step 8: Select Appropriate Pilot Locations







### Step 9: Assess Capture Potential

# Rainfall depth (in) X Runoff Coefficient X Contributing Drainage Area (SF) / 12 inches = TOTAL RUNOFF

The design team used a 1.2" storm volume for this equation (90<sup>th</sup> percentile storm)

Again, the design team used a 0.95 runoff coefficient.

The total contributing drainage area for ideal and potential roadway segments is 1.2 million SF

1.2 x 0.95 x 1,200,000 / 12 = 114,000 cubic feet of runoff





#### Step 9: Assess Capture Potential

Total Runoff Volume (ft3) X 7.48 gallons per cubic foot = TOTAL RAINWATER (GAL)

114,000 (ft3) X 7.48 gal/ft3 = 852,700 gallons





### Step 10: Develop a Master Plan







# **Recipe Review**



Hawkins Partners, Inc.





# Thank you!

Gayle Killam River Network <u>gkillam@rivernetwork.org</u> (503) 806-1554





